Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Atmospheric Research ; 287, 2023.
Article in English | Scopus | ID: covidwho-2257808

ABSTRACT

The present study was conducted to investigate the potential of water soluble organic carbon (WSOC) in CCN activation under restricted anthropogenic emissions over a high altitude station, Darjeeling (27.01° N and 88.15° E,∼2200 amsl and covered with huge coniferous forests) in the eastern parts of Himalaya in India. We measured CN, CCN, and ultrafine WSOC (WSOC0.1) during April–May 2020 (COVID-19 lockdown) and compared with the normal period (April–May 2019) to investigate the relative dominance of biogenic over anthropogenic emissions to the aerosol-CCN activation. Though an expected significant decline (53%) in CN concentration was observed, CCN exhibited ∼17% increase during the lockdown period. The activation ratio (AR: CCN/CN) jumped from 0.30 during normal to 0.72 during the lockdown period. The aerosol solubility was also found to be increased during the lockdown period (∼27% decrease in the k- parameter (k)). Lockdown-WSOC was higher (1.62 μg m−3) than the normal-WSOC (1.13 μg m−3) and exhibited better regression with CCN in absence of anthropogenic emissions (Lockdown: R2 = 0.83, p < 0.05;Normal: R2 = 0.40, p < 0.05). Here we hypothesize that under restricted fossil fuel emissions during lockdown (57% decline in NOx), surface ozone was increased by 31%, that in turn favored the photochemical oxidation of biogenic VOCs emitted only from coniferous forest cover to produce huge amount of SOC. The ultrafine "biogenic-only” WSOC (under restricted anthropogenic WSOC during lockdown) participated in CCN activation actively and with higher proficiency compared to the normal period. The study bears immense importance of the role of biogenic emissions in cloud droplet formation over this part of the Himalaya under restricted anthropogenic emissions. The present hypothesis could open a new route of aerosol formation and their CCN activation under high deficiency of anthropogenic emissions. © 2023 Elsevier B.V.

2.
Atmospheric Environment ; 293, 2023.
Article in English | Scopus | ID: covidwho-2241340

ABSTRACT

Particle size distribution is a major factor in the health and climate effects of ambient aerosols, and it shows a large variation depending on the prevailing atmospheric emission sources. In this work, the particle number size distributions of ambient air were investigated at a suburban detached housing area in northern Helsinki, Finland, during a half-year period from winter to summer of 2020. The measurements were conducted with a scanning mobility particle sizer (SMPS) with a particle size range of 16–698 nm (mobility diameter), and the events with a dominant particle source were identified systematically from the data based on the time of the day and different particle physical and chemical properties. During the measurement period, four different types of events with a dominant contribution from either wood-burning (WB), traffic (TRA), secondary biogenic (BIO), or long-range transported (LRT) aerosol were observed. The particle size was the largest for the LRT events followed by BIO, WB, and TRA events with the geometric mean diameters of 72, 62, 57, and 41 nm, respectively. BIO and LRT produced the largest particle mode sizes followed by WB, and TRA with the modes of 69, 69, 46, and 25 nm, respectively. Each event type had also a noticeably different shape of the average number size distribution (NSD). In addition to the evaluation of NSDs representing different particle sources, also the effects of COVID-19 lockdown on specific aerosol properties were studied as during the measurement period the COVID-19 restrictions took place greatly reducing the traffic volumes in the Helsinki area in the spring of 2020. These restrictions had a significant contribution to reducing the concentrations of NOx and black carbon originating from fossil fuel combustion concentration, but insignificant effects on other studied variables such as number concentration and size distribution or particle mass concentrations (PM1, PM2.5, or PM10). © 2022 The Authors

3.
2021 SPE International Conference on Oilfield Chemistry, OCC 2021 ; 2021-December, 2021.
Article in English | Scopus | ID: covidwho-1770833

ABSTRACT

Preservative biocides are designed to control microbial growth and biogenic souring in the downhole environment. We report the prevention of biogenic souring by 4,4-dimethyloxazolidine (DMO, a preservative biocide) and glutaraldehyde as compared to that afforded by tributyl tetradecyl phosphonium chloride (TTPC, a cationic surface-active biocide), in a first-of-its kind suite of High Pressure, High Temperature (HPHT) Bioreactors that simulate hydraulically fractured shale reservoirs. The design of these new bioreactors, which recreate the downhole environment (temperatures, pressures, formation solids, and frac additives) in a controlled laboratory environment, enables the evaluation of biocides under field-relevant conditions. The bioreactors receiving either no biocide treatment or treatment with a high concentration of TTPC (50 ppm active ingredient) rapidly soured within the first two weeks of shut-in, and all surpassed the maximum detectable level of H2S (343 ppm) after the addition of live microbes to the reactors. Conversely, a higher loading of DMO (150 pppm active ingredient) maintained H2S concentrations below the minimum dectable level (5 ppm) for six weeks, and held H2S concentrations to 10.3 +/- 5.2 ppm after fifteen weeks of shut-in and two post shut-in microbial rechallenges. In a second study, a lower concentration of DMO (50 ppm active ingredient) maintained H2S concentrations below the minimum detectable level through the addition of live microbes after three weeks, and H2S concentrations only registered above 10 ppm upon a second addition of live microbes after five weeks. In this same study (which was performed at moderate temperatures), a 50 ppm (active ingredient) treatment of glutaraldehyde also maintained H2S concentrations below the minimum detectable level through the addition of live microbes after three weeks, and H2S concentrations registered 15.0 +/- 9.7 ppm H2S after four weeks. Similar time scales of protection are observed for each treatment condition through the enumeration of microbes present in each reactor. The differentiation in antimicrobial activity (and specifically, prevention of biogenic souring) afforded by DMO and glutaraldehyde suggests that such nonionic, preservative biocides are a superior choice for maintaining control over problematic microorganisms as compared to surface-active biocides like TTPC at the concentrations tested. The significant duration of efficacy provided by DMO and glutaraldehyde in this first-of-its-kind suite of simulated reservoirs demonstrates that comprehensive preservation and prevention of biogenic souring from completion through to production is feasible. Such comprehensive, prolonged protection is especially relevant for extended shut-ins or drilled but uncompleted wells (DUCS) such as those experienced during the COVID-19 pandemic. The environment simulated within the bioreactors demonstrates that the compatibility afforded by a preservative biocide offers downhole protection that cationic, surface-active biocides do not. Copyright 2021, Society of Petroleum Engineers

4.
4th International Scientific and Practical Conference on Digital Economy and Finances, DEFIN 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1731305

ABSTRACT

In the context of the economic and political uncertainty associated with the 2019-nCoV pandemic, it is necessary to determine the socio-psychological factors involved in the transformation of the behavior of insurance consumers under the influence of a biogenic threat. This study measures financial anxiety and its impact on the insurance behavior of Russian citizens. The analyses of the financial anxiety of Russian citizens cover three stages of observation: before the start of the 2019 nCoV pandemic (N = 766), during the period of quarantine measures announced in Russia in March 2020 (N = 856), and after the relaxation of quarantine measures at the end of April 2020 (N = 963). Psychological analysis data were obtained from the online survey "Financial anxiety (in the context of insurance)". It includes five measurement scales.: physical manifestations of financial incentive anxiety, with money shortages and financial uncertainty, the value of insurance coverage, financial confidence, and perception of insurance and investment risks. It was found that Russian citizens consider it important to have insurance coverage for a "rainy day", and they showed confidence in the insurance market during the biogenic crisis. However, unfortunately, during the 19-nCoV-1 Russian citizens did not feel financially secure, unlike in the period before 19-nCoV. Women showed high scores for physical manifestations of financial anxiety and low financial confidence in the future, in contrast to men, regardless of the observation period. © 2021 ACM.

SELECTION OF CITATIONS
SEARCH DETAIL